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Abstract

Background: In emergency medical services (EMSs), accurately predicting the severity of a patient’s medical
condition is important for the early identification of those who are vulnerable and at high-risk. In this study, we
developed and validated an artificial intelligence (AI) algorithm based on deep learning to predict the need for
critical care during EMS.

Methods: We conducted a retrospective observation cohort study. The algorithm was established using development
data from the Korean national emergency department information system, which were collected during visits in real
time from 151 emergency departments (EDs). We validated the algorithm using EMS run sheets from two EDs. The
study subjects comprised adult patients who visited EDs. The endpoint was critical care, and we used age, sex, chief
complaint, symptom onset to arrival time, trauma, and initial vital signs as the predicted variables.

Results: The number of patients in the development data was 8,981,181, and the validation data comprised 2604 EMS
run sheets from two hospitals. The area under the receiver operating characteristic curve of the algorithm to predict
the critical care was 0.867 (95% confidence interval, [0.864–0.871]). This result outperformed the Emergency Severity
Index (0.839 [0.831–0.846]), Korean Triage and Acuity System (0.824 [0.815–0.832]), National Early Warning Score (0.741
[0.734–0.748]), and Modified Early Warning Score (0.696 [0.691–0.699]).

Conclusions: The AI algorithm accurately predicted the need for the critical care of patients using information during
EMS and outperformed the conventional triage tools and early warning scores.
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Introduction
An important objective of emergency medical services
(EMSs) is to provide appropriate prehospital

management and transfer to the relevant emergency de-
partment (ED) based on a patient’s status [1]. Several
prognosis prediction tools have been developed for EMS
but are limited to specific situations, such as trauma [2].
Although some efforts have been made to apply existing
ED triage tools and early warning scores to EMSs, these
tools have so far performed unsatisfactorily [3].
In EMS, accurately predicting the need for critical care

is important for the early identification of the vulnerabil-
ity and high-risk of patients, and for deciding the most
appropriate management during transfer [4]. If the
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patient is expected to require critical care, the EMS
technician must pass through the nearest low-level ED
to a high-level ED [5]. Accurate tools for predicting
prognosis are important for communication between the
prehospital EMS technician and hospital medical staff to
provide online medical directions and prepare in-
hospital management [6, 7].
The goal of this study was to develop and validate an

artificial intelligence (AI) algorithm based on deep learn-
ing to predict the need for critical care of patients in
EMSs accurately. Deep learning could overcome the lim-
itations of conventional statistical methods and has re-
cently achieved state-of-the-art performance in several
domains, including medical imaging and outcome pre-
diction [8–10]. To the best of our knowledge, this study
is the first to predict severity in EMS using an AI
algorithm.

Methods
Study design and setting
This was a multicenter retrospective cohort study, not a
blind study. Furthermore, the study was entirely separated
between development and external validation data. To es-
tablish the AI algorithm, we used the Korean national
emergency department information system (NEDIS),
which collects all patient visits in real time from 151 EDs
in Korea. To externally validate our model, EMS run
sheets from patients who visited two EDs were used. Spe-
cifically, the EMS run sheets contain information on when
patients were contacted by an EMS. The run sheets were
saved as electronic medical records. The sample size of
the validation dataset was determined using an accurate
algorithm in a previous study [11].
The data comprised age, sex, chief complaint, time

from symptom onset to visit (or EMS contact), trauma,
initial vital signs (systolic blood pressure, diastolic blood
pressure, heart rate, respiratory rate, and body
temperature), and mental status; these data were used as
the predictor variables. The endpoint of this study was
critical care (admission to intensive care unit). For the
stabilized training, the input variables were normalized
with a z-score.
The institutional review boards of Sejong General

Hospital (2019–0212) and Mediplex Sejong Hospital
(2019–049) approved this study protocol and waived the
need for informed consent because of the impracticality
and minimal harm involved.

Selection of participants
The study participants were adult patients (aged ≥18
years) who visited EDs. From the development data
(NEDIS), we selected adult patients who visited EDs be-
tween January 2014 and December 2016. Moreover, we
selected patients who visited two EDs using EMSs

between September 2018 and February 2019 as the test
data. We excluded subjects who were declared dead on ar-
rival and those for whom data were missing, as shown in
Fig. 1.

Development of AI algorithm based on deep learning
To establish our algorithm, development data (NEDIS)
were utilized. To classify the presence of critical care
needs, we used feedforward networks (5 hidden layers,
89 nodes, and batch normalization [12, 13]), which train
the output using the softmax classifier. We applied a
dropout rate of 0.5 at each layer for regularization and a
rectified linear unit was used for the activation function.
The Adam optimizer was used to improve the efficiency
of optimization, while the cross-entropy loss function
was used to minimize the prediction loss based on a su-
pervised learning. In addition, we used TensorFlow (the
Google Brain Team, Mountain View, United States) as
the backend [14]. The calibration plot and Brier score
are described in a supplemental figure.

Performance test of AI algorithm and comparison with
conventional methods
We compared the performance of the algorithm in
terms of predicting critical care with those of the Emer-
gency Severity Index (ESI), Korean Triage and Acuity
System (KTAS), Modified Early Warning Score (MEWS),
and National Early Warning Score (NEWS). The ESI is a
globally used five-level ED triage algorithm, initially de-
veloped in 1999 [15, 16]. It is based on the severity of
patients’ healthcare problems and the number of re-
sources that is anticipated to require. KTAS was devel-
oped in 2012 based on the Canadian Triage and Acuity
Scale and has been used nationwide as a triage since
2016 in Korea [11, 17, 18]. KTAS is a five-level ED triage
algorithm that considers symptoms, pain, and physio-
logical values. Three medical staff members with more
than 5 years of experience in clinical practice in an ED
participated in this study. They decided the ESI and
KTAS levels with information from the EMS run sheets
for patients in the test data. Conflicting results were de-
cided by discussion.
MEWS is a widely used tool for predicting severity

and deterioration, and is calculated using systolic blood
pressure, heart rate, respiratory rate, body temperature,
and mental status [19]. NEWS was developed in the
United Kingdom. It is a popular aggregated scoring sys-
tem that considers respiratory rate, oxygen saturation,
temperature, systolic blood pressure, heart rate, and
mental status [20]. The MEWS and NEWS scores have
been well-validated and used globally. In previous stud-
ies, some efforts have been made to apply these early
warning scores to EMSs [21]. We calculated the MEWS
and NEWS scores based on information from the EMS
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run sheets. The EMS run sheets comprise data at the
time of first contact of EMSs with each patient.
We validated the developed algorithm using exclu-

sively divided test data. The performance measures were
taken as the area under the receiver operating character-
istic curve (AUC), sensitivity, specificity, positive predict-
ive value (PPV), negative predictive value (NPV), and F1
score. The AUC is a frequently used metric and shows
the sensitivity against 1-specificity [22]. Based on previ-
ous studies, we used levels 1–2, levels 1–2, points 3–14,
and points 5–20 to predict the critical care with the ESI,
KTAS, MEWS, and NEWS, respectively [11, 17–21].
When evaluating the continuous score predicted by the
AI algorithm, we fixed the sensitivity as 0.8. Further-
more, we evaluated the 95% confidence interval using
bootstrapping (10,000 times resampling with replace-
ment) [23]. We used the ROCR package in R (R Devel-
opment Core Team, Vienna, Austria) for these analyses.

Combining the AI algorithm and conventional triage tools
With the aim of developing a high-performance algo-
rithm, we combined the AI algorithm with conventional
triage tools. This method is called ensemble [24]. A
major limitation of the ESI and KTAS, as reported by
previous studies, is the decreasing accuracy attributed to

patients at mid-level, such as level 3. We applied the AI
algorithm for patients at level 3 for each ESI and KTAS,
and validated the performance of the two ensemble
models (AI+ESI and AI+KTAS). For this, patients at
levels 1 and 2 were predicted to be critical while patients
at levels 4 and 5 were predicted to be noncritical. The
AI algorithm only evaluated the patients at level 3.

Results
In the development data, in total, 9,304,887 ED visits to
151 hospitals were included in the NEDIS. We excluded
323,696 visits because of the exclusion criteria: 44,815
were declared dead on arrival, while data were missing
for 278,881 visits. No significant differences in the pre-
dictor variables were observed between the included and
excluded study subjects due to the missing variables.
Thus, the study subjects included 8,981,181 ED patients;
511,342 ended up in critical care (5.7%) and 125,219
(1.4%) died in hospital.
In the case of the test data, after excluding 124 patients

(14 dead on arrival and 110 missing data), validation of the
AI algorithm in EMSs was performed using 2604 patients
from two hospitals, whose endpoints were 319 in critical
care (12.3%) and 30 of whom died in hospital (1.2%).

Fig. 1 Study flowchart. Legends: ED: emergency department; EMS: emergency medical service

Kang et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine           (2020) 28:17 Page 3 of 8



The baseline characteristics of the development and
test data are shown in Table 1. These two data were ex-
clusively divided, and their characteristics are signifi-
cantly different.
As shown in Fig. 2, the AUC of the AI algorithm was

0.867 (95% confidence interval [0.864–0.871]), which out-
performed the ESI (0.839), KTAS (0.824), NEWS (0.741),
and MEWS (0.696). Furthermore, the ensemble algorithm
AI + ESI (0.923 [0.920–0.926]) significantly outperformed
the other ensemble algorithm AI + KTAS (0.909 [0.906–
0.912]), AI algorithm, and other conventional methods.

Discussion
This study demonstrated that the AI algorithm accur-
ately predicted the need for critical care in a prehospital
EMS situation.

Predicting the need for critical care is important for
selecting the destination ED and for providing the ap-
propriate management during transfer [4, 5]. In addition,
tools for accurately predicting the prognosis and treat-
ment are important to communicate between the pre-
hospital EMS technician and hospital medical staff [6, 7].
However, most triage tools in prehospital situations were
developed for trauma patients only, and there is no gen-
eralized tool that covers all EMS situations [2, 25]. Al-
though the conventional triage tools of EDs have been
applied to predict the need for critical care at prehospital
situations [21, 26, 27], they showed an unsatisfactory
performance in predicting prognosis.
The important finding of this study is that the predict-

ive performance of the AI model based on deep learning
is superior to those of the conventional triage tools and

Table 1 Baseline characteristicsa

Characteristics Development data
(n = 8,981,181)

Test data
(n = 2604)

p-valueb

Data

Data type National Emergency Department Infromation System (NEDIS) Emergency Medical Service (EMS) Run Sheets

Data source Emergency department visit data EMS run sheets

Data period 1 January 2014–30 June 2016 1 September 2018–28 February 2019

Age 49.9 ± 18.9 61.5 ± 18.6 < 0.001

Female, No.(%) 4,511,654 (50.2%) 1411 (54.2%) < 0.001

Initial vital signs, mean ± SD

Systolic BP (mmHg) 131.2 ± 23.3 132.0 ± 24.6 0.271

Diastolic BP (mmHg) 79.3 ± 13.9 83.7 ± 17.4 < 0.001

Heart rate (/min) 83.8 ± 16.2 85.5 ± 20.5 < 0.001

Respiratory rate (/min) 19.6 ± 2.7 17.7 ± 3.3 < 0.001

Body temperature (°C) 36.7 ± 0.7 36.7 ± 0.8 < 0.001

Mental status, No.(%) < 0.001

Alert 8,674,058 (96.6%) 2513 (96.5%)

Reacting to voice 161,624 (1.8%) 20 (0.8%)

Reacting to pain 113,192 (1.3%) 46 (1.8%)

Unresponsive 32,310 (0.3%) 25 (1.0%)

Trauma, No.(%) 2,536,815 (28.2%) 550 (21.1%) < 0.001

Symptome onset to visit (contact) time, No.(%) < 0.001

–24 h 5,394,527 (60.1%) 2105 (80.8%)

24 h–72 h 2,666,179 (29.7%) 448 (17.2%)

72 h–7 Days 536,525 (6.0%) 38 (1.5%)

7 Days–30 Days 258,641 (2.9%) 12 (0.5%)

30 Days– 125,312 (1.4%) 1 (0.0%)

Outcomes, No.(%)

Critical care 511,342 (5.7%) 319 (12.3%) 0.006

In-hospital mortality 125,219 (1.4%) 30 (1.2%) < 0.001

Hospitalization 2,443,994 (27.1%) 1003 (38.5%) < 0.001
aBP denotes blood pressure
bThe alternative hypothesis for this p-value was that there is a difference between the development and test data group for each variable
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scoring systems. In addition, three ED medical staff
members were involved in deciding the level of triage
with EMS run sheets. Interestingly, the accuracy of the
AI algorithm was better than the accuracy of the deci-
sion of the expert medical staff. The AI algorithm per-
forms automatic calculations based on basic information
and does not require expert judgment and medical
experience.
Deep learning can obtain a high performance with-

out prior knowledge to train the model; thus, indicat-
ing that deep learning somehow automatically learns
the feature relationship among input variables. In our

previous study, we developed an AI algorithm based
on deep learning for predicting the critical care of pa-
tients in an ED [11]. From the previous study, we
found that conventional statistical methods such as
logistic regression may have difficulty in determining
the relationship among input variables [10, 28, 29].
As a large number of input variables were utilized,
the dimensionality of the input increased. This some-
how indicates that the process of feature extraction
by humans should be required and effort should be
made to determine the relationship between input
variables.

Fig. 2 Receiver operating characteristics curve for predicting critical care Legends: *AI: artificial intelligence; AUC: area under the receiver
operating characteristics curve; CI: confidence interval; ESI: Emergency Severity Index, KTAS: Korean triage and acuity system; MEWS: modified
early warning score; NEWS: national early warning score; NPV: negative predictive value; PPV: positive predictive value. †The alternative hypothesis
for this p-value was that there is a difference between the artificial intelligence algorithm and the other predictive methods. ‡The alternative
hypothesis for this p-value was that there is a difference between the ensemble model, combining artificial intelligence and the ESI, and the
other predictive methods

Kang et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine           (2020) 28:17 Page 5 of 8



Meanwhile, deep learning includes feature learning,
which allows the model to automatically learn the rela-
tionships and characteristics between input variables re-
quired to perform a task [30]. As shown in our previous
studies, deep learning could be used to understand the
connection between features and outperformed conven-
tional and other machine learning methods [9, 11, 31]. It
is important to note that feature learning is not designed
by humans in deep learning. As this process evolves auto-
matically, it will be easier and more effective to identify in-
tricate structures in high-dimensional data without
information loss, and will result in end-to-end learning,
which requires little engineering by humans. Finally, it can
be easily and quickly applied to other tasks [30].
In addition, one of the well-known concepts in the use

of deep learning is the importance of the amount of
data. The accumulation of numerous data for decades
advanced the performance improvement of deep learn-
ing. Likewise, the performance of the model based on
deep learning depends greatly on the amount of data. In
this study, we used the NEDIS data, which comprise mil-
lions of data. We believe that this amount of accumu-
lated data would be more suitable for deep learning than
other approaches. Moreover, we only used the initial

vital signs for patients (assuming that it would be diffi-
cult to measure vital signs several times during trans-
port). We considered the simple DNN model as more
suitable than LSTM. Because the LSTM is based on se-
quential information.
The prevention of overfitting into a single hospital is an

important issue. Further, it is crucial to verify whether the
model was overfitted to a specific environment. Thus, the
acquisition of external validation data is important. Wolpert
explains this in the “No Free Lunch” theorem: If optimized
in one situation, an algorithm cannot produce good results
in other situations [32]. In this study, the development (ED)
and test data (EMS) were exclusively divided. More specif-
ically, the model was evaluated on the external dataset and
could possibly avoid overfitting in one environment.
A major limitation of conventional triage tools is their

low accuracy at the middle level [18, 33, 34]. As shown in
Fig. 3, at level 3 triages, the population were mixed as crit-
ical care and non-critical care patients. If the patients at
level 3 can be distinguished, we consider that the accuracy
of predicting the outcome will increase. Therefore, we
made effort to apply the algorithm for patients at level 3.
In this study, we developed the ensemble algorithm to

evaluate level 3 patients and confirmed a higher

Fig. 3 Patient distributions and performance using conventional triage systems
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performance with the AI+ESI algorithm. It is interesting
to note that the combination of the expert opinion (ESI
level) and the AI algorithm exhibits a more accurate per-
formance. These results provide an opportunity to solve
the problem for researchers in other medical fields. For
example, in previous studies of urology, AI algorithms
have been applied for the prediction of prostate biopsy re-
sults and the recurrence-free probability of bladder cancer
[35]. In addition, the in-hospital and long-term mortalities
of patients with cardiovascular diseases have been pre-
dicted using AI algorithms in several previous studies.
Our study has several limitations. First, deep learning is

considered a black box. Although we can fit the AI algo-
rithm based on deep learning, it is difficult to fully under-
stand how the model predicts critical care. In addition,
contrary to traditional methods, such as XGboost or Cat-
Boost that can present uncertainty measures (e.g., 95%
confidence interval), deep learning has greater difficulty in
quantifying the uncertainty measures. In this paper, to de-
scribe the uncertainty information, we attempted to quan-
titatively measure the uncertainty as much as possible
through bootstrapping [23]. In fact, recent attempts have
been made to explain deep learning and measuring uncer-
tainty, which will be our next area of study [36, 37]. Sec-
ond, as this study was conducted in only two hospitals in
Korea, it is necessary to validate the model for patients in
EMSs in greater populations or other countries.
We developed a high-performance algorithm by com-

bining an AI algorithm and a conventional triage tool.
Despite several limitations, deep learning achieved a high
predictive performance in several medical domains. Fur-
ther, the deep learning algorithm can be developed more
easily than a machine learning method. Based on our
methodologies and results, other researchers can develop
algorithms for their own groups of patients and situa-
tions. Additionally, medical researchers could investigate
the applicability and future development of deep learn-
ing in various domains of medicine. For example, using
this algorithm, the need for the critical care of patients
could be predicted during EMS situations, and the des-
tination hospital could be optimized by considering the
predicted critical care needs and hospital’s situation (e.g.,
ED overcrowding, ICU capacity, and critical care avail-
ability). Moreover, the predictor variables in this algo-
rithm were simple and could be used via a wearable
device and information from a patient or their family.
Because of this, patients with severe underlying diseases
could be monitored daily while they are living at home
regarding their needs for critical care, and could be re-
ferred to hospital earlier if they exhibit deterioration.

Conclusion
In this study, a triage using an AI algorithm accurately
predicted the need for critical care of patients using

information during EMS situations, and outperformed
the conventional triage tools and early warning scores.
The results showed the potential of AI for EMSs, which
will be a useful and fast tool to identify vulnerable pa-
tients and help precise decision-making in daily practice.
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