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Deep-learning model for screening sepsis 
using electrocardiography
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Abstract 

Background: Sepsis is a life‑threatening organ dysfunction and a major healthcare burden worldwide. Although 
sepsis is a medical emergency that requires immediate management, screening for the occurrence of sepsis is dif‑
ficult. Herein, we propose a deep learning‑based model (DLM) for screening sepsis using electrocardiography (ECG).

Methods: This retrospective cohort study included 46,017 patients who were admitted to two hospitals. A total of 
1,548 and 639 patients had sepsis and septic shock, respectively. The DLM was developed using 73,727 ECGs from 
18,142 patients, and internal validation was conducted using 7774 ECGs from 7,774 patients. Furthermore, we con‑
ducted an external validation with 20,101 ECGs from 20,101 patients from another hospital to verify the applicability 
of the DLM across centers.

Results: During the internal and external validations, the area under the receiver operating characteristic curve (AUC) 
of the DLM using 12‑lead ECG was 0.901 (95% confidence interval, 0.882–0.920) and 0.863 (0.846–0.879), respectively, 
for screening sepsis and 0.906 (95% confidence interval (CI), 0.877–0.936) and 0.899 (95% CI, 0.872–0.925), respectively, 
for detecting septic shock. The AUC of the DLM for detecting sepsis using 6‑lead and single‑lead ECGs was 0.845–
0.882. A sensitivity map revealed that the QRS complex and T waves were associated with sepsis. Subgroup analysis 
was conducted using ECGs from 4,609 patients who were admitted with an infectious disease, and the AUC of the 
DLM for predicting in‑hospital mortality was 0.817 (0.793–0.840). There was a significant difference in the prediction 
score of DLM using ECG according to the presence of infection in the validation dataset (0.277 vs. 0.574, p < 0.001), 
including severe acute respiratory syndrome coronavirus 2 (0.260 vs. 0.725, p = 0.018).

Conclusions: The DLM delivered reasonable performance for sepsis screening using 12‑, 6‑, and single‑lead ECGs. 
The results suggest that sepsis can be screened using not only conventional ECG devices but also diverse life‑type 
ECG machines employing the DLM, thereby preventing irreversible disease progression and mortality.

Keywords: Sepsis, Shock, Septic, Infections, Electrocardiography, Deep learning, Artificial intelligence

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Sepsis is a life-threatening organ dysfunction caused by 
dysregulation of the host response to infection and is a 
major healthcare problem worldwide [1, 2]. In 2017, 
a total of 48.9 million cases of sepsis were recorded 
worldwide, and 11.0 million sepsis-related deaths were 
reported, representing 19.7% of all the global deaths [2, 
3]. Although the mortality rate associated with sepsis has 
decreased by 52.8% over the past 20 years, the incidence 
has increased, likely reflecting the aging population 
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with more comorbidities [3]. Because sepsis is a medical 
emergency that requires immediate treatment and resus-
citation, early recognition is a cornerstone for preventing 
disease progression and death [2].

Vital signs and blood tests are required to screen and 
diagnose sepsis [1]. Vital signs are measured by the medi-
cal staff at intervals, and blood tests require infrastruc-
ture for blood sampling and analysis. Therefore, it is 
difficult to monitor the occurrence of sepsis in real time 
in hospitals. Sepsis has its highest burden in areas with a 
lower sociodemographic index as these areas lack medi-
cal resources for screening, diagnosis, and treatment of 
sepsis [4]. Furthermore, home monitoring for the dete-
rioration of infected patients and screening for sepsis 
are critical for appropriate allocation of scarce medical 
resources in a pandemic such as the ongoing severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic. However, the existing method for the screening 
of sepsis using vital signs and laboratory examinations is 
limited in daily living situations and remote monitoring.

A low-cost and widely available method for screening 
patients with sepsis has important therapeutic implica-
tions. Electrocardiography (ECG) is a noninvasive test 
that can be monitored in real time, and diverse wearable 
and life-type devices have been developed for remote 
monitoring and transfer. In the SARS-CoV-2 pandemic, 
an ECG monitoring device was used to monitor patients 
[5]. In previous studies, approximately 50% of patients 
who were diagnosed with sepsis exhibited signs of myo-
cardial dysfunction; furthermore, a prolonged duration 
and decreased amplitude of the QRS complex have been 
reported in sepsis patients [6–9]. Artificial intelligence 
(AI) technologies based on deep learning have been used 
in diverse medical domains, and a DLM has been applied 
for the diagnosis of heart failure, pulmonary hyperten-
sion, valvular heart disease, electrolyte imbalance, and 
anemia using ECG [10–14]. In contrast to conventional 
statistical methods, a DLM can diagnose or predict dis-
eases by extracting possible implications from data and 
capturing nonlinear and subtle changes in an ECG [15]. 
In this study, we developed and validated a DLM for 
sepsis screening using ECG. And we confirmed the per-
formance when using 12-, 6-, and single-lead ECGs to 
confirm the possibility of predicting sepsis in diverse 
ECG devices.

Methods
Study design and population
We conducted a retrospective multicenter cohort study 
in two hospitals. The study population included adult 
patients who were admitted to two hospitals and under-
went at least one standard 10-s 12-lead ECG during 
the study period. We excluded individuals with missing 

ECG data. Data from the Sejong General Hospital (SGH) 
were used to develop and validate the DLM. The patients 
admitted to SGH during the study period (October 2016 
to November 2020) were randomly split into devel-
opment (70%) and internal-validation (30%) datasets 
(Fig. 1). Data from the Mediplex Sejong Hospital (MSH) 
during the study period (March 2017 to November 2020) 
were only used for external validation, confirming that 
the developed DLM was robust across different hospitals. 
There were no patients that had undergone treatment 
both at the SGH and MSH. The patients from the two 
hospitals were exclusively divided. As the purpose of the 
validation dataset was to assess the accuracy of the DLM, 
we used only one ECG from each patient for the internal 
and external validation datasets, the time closest to the 
sepsis time, which was confirmed by critical care medi-
cine physicians.

This study was approved by the Institutional Review 
Board (IRB) of SGH (2020–0541) and MSH (2020–149). 
Clinical data, including ECG, age, sex, admission note, 
vital signs, and laboratory examination results, were 
extracted from the electronic health records of both hos-
pitals after anonymization. The IRBs of both hospitals 
waived the need for informed consent because this was 
a retrospective study using fully anonymized data, and 
thus, the possibility of harm to patients was unlikely.

Predictor variable
ECG was the only predictor variable. Digitally stored 
12-lead ECG data had 500 data points per second 
(500 Hz) at each lead for 10 s. In other words, one ECG 
dataset has 60,000 values. We preprocessed the ECGs 
for sampling, normalization, and noise filtering. Because 
there were more artifacts at the beginning and end of 
the ECG, we removed 1  s of data at the beginning and 
end of the ECG. And we normalized (z-score) based on 
the mean and standard deviation. We conducted noise 
filtering for decreased artifact in ECG data and used 
band-pass filter for noise reduction. We also normalized 
the value of age and changed the value of sex to one-hot 
encoding. We also used augmentation, the addition of 
linear and nonlinear noise causing baseline changes was 
performed. We used 8-s data of each lead. We created a 
dataset using 12-, 6-, and single-lead ECG datasets. We 
created a 12-lead ECG dataset using 12-lead ECG data 
(12 × 4000). We also created 6- and single-lead ECG 
datasets from the partial datasets of the 12-lead ECG. 
The 6-lead ECG dataset was created from limb 6-lead (I, 
II, III, aVL, aVR, aVF) and a single-lead ECG dataset was 
created from lead I. We selected these leads because they 
can be measured using diverse wearable and life-type 
ECG devices.
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Endpoints
The primary endpoint of this study was the presence of 
sepsis. Sepsis was defined as per the Third International 
Consensus Definitions for Sepsis and Septic Shock (Sep-
sis-3). Three critical care medicine physicians reviewed 
the medical records of the study population, including 
admission notes, laboratory examination results, vital 
signs, drug administration data, and rapid response 
team’s progression note, to label the presence and time 
range of sepsis. Septic shock was the secondary endpoint 
and defined based on Sepsis-3.

For the primary endpoint—sepsis in patients with sus-
pected infectious disease—we labeled the ECG within 
and outside the time range of sepsis as sepsis and non-
sepsis, respectively. Further, in patients who had no his-
tory of infectious diseases during hospitalization, we 
labeled all ECGs as non-sepsis. Similarly, for the second-
ary endpoint, namely septic shock, we labeled the ECG 
within the time range of septic shock as septic shock and 
the other ECG as non-septic shock.

Development of DLM for detecting sepsis using ECG
We developed a DLM based on a convolutional neural 
network (residual neural networks in particular) (Fig. 2). 
The residual neural network contained a skip connection 

to avoid the problem of vanishing gradients. In a residual 
block with four stages, two convolutional layers and two 
batch normalization layers were repeated. Furthermore, 
there were two flattened layers in the DLM. The last layer 
of the seventh residual block was connected to a flat-
tened layer that is fully connected to a one-dimensional 
(1D) layer composed of neural nodes. The second fully 
connected 1D layer was connected to the output node, 
which was composed of two nodes. The value of the 
output nodes of the DLM represents the probability of 
endpoints. The output node of the DLM uses a softmax 
function as an activation function.

Statistical analysis
At each input ECG of the validation data, the DLM cal-
culated the probability of sepsis within the range of 
zero (non-sepsis) to 1 (sepsis). To confirm the accuracy 
of the DLM, we compared the probability calculated by 
the DLM with the presence of sepsis (ground truth) in 
the internal and external validation datasets. Thus, we 
used the area under the receiver operating characteris-
tic curve (AUC), sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV). 
We confirmed the cut-off point from Youden’s J statistics 
in the development dataset. We then applied the cut-off 

Fig. 1 Study flowchart
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point to validate the performance of internal and exter-
nal validations [16]. As a comparative measure, we used 
C-reactive protein (CRP) and body temperature abnor-
mality (difference between measured body temperature 
and 36.5 °C) to screen for sepsis and septic shock.

Continuous variables were presented as mean val-
ues (standard deviation, SD) and compared using the 
unpaired Student’s t-test or Mann–Whitney U test. Cat-
egorical variables were expressed as frequencies and 
percentages and were compared using the χ2 test. The 
exact 95% CIs were used for all measures of diagnostic 
performance, except for AUC. The CIs for the AUC were 
determined based on the Sun and Su optimization of the 
De-long method using the pROC package in R (R Foun-
dation for Statistical Computing, Vienna, Austria). A sig-
nificant difference in patient characteristics was defined 
as a two-sided p value < 0.05. Statistical analyses were 
performed using the R software, version 3.4. In addition, 
PyTorch’s open-source software library was used for the 
backend and Python (version 3.6) for the analysis[17].

Visualizing the developed DLM for interpretation
To compare the findings from the developed DLM with 
the current medical knowledge, we used a sensitivity 
map using the saliency method [18, 19]. The map shows 
the region with a significant effect on the decision of the 
DLM. The sensitivity map was computed based on the 
first-order gradients of the classifier probabilities with 
respect to the input signals; if the probability of a clas-
sifier is sensitive to a specific region of the signal, the 
region would be important in the decision of the DLM. 
Using this method, we verified that the region of the 
ECG was correlated with sepsis. We used a gradient class 
activation map (Grad-CAM) as the sensitivity map. We 
could not find a definite decision process for the devel-
oped deep-learning model. Instead, we calculated the 
importance of the selected variables. We also confirmed 
the variable importance of the ECG features in the con-
ventional statistical method (logistic regression) and 
machine-learning methods (random forest and deep 
learning). We calculated the variable importance of logis-
tic regression, random forest, and deep learning based 
on the difference in deviance, mean degreased Gini, and 
Garson’s relative importance, respectively.

Verifying DLM performance to predict in‑hospital mortality 
among infectious disease patients
We hypothesized that the ECGs could display severity in 
infectious diseases and that the developed DLM would 
predict in-hospital mortality of patients with infectious 
diseases. In other words, we hypothesized that a high 
DLM score is correlated with a severe infectious dis-
ease. We conducted a subgroup analysis of patients with 

Fig. 2 Architecture of DLM to screen sepsis using ECG. conv 
convolutional neural network layer; DLM deep‑learning model; ECG 
electrocardiography; FC fully connected layer
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suspected infectious diseases in the internal and external 
validation datasets. We verified the in-hospital mortality 
prediction performance of the DLM with these patients. 
To confirm the accuracy of the DLM, we compared the 
score calculated by the DLM with the presence of in-hos-
pital mortality in the subgroup datasets. For comparison, 
we used the sequential organ failure assessment (SOFA) 
score, quick SOFA score, National Early Warning Score 
(NEWS), Modified Early Warning Score (MEWS), lac-
tate, white blood cell (WBC) count, and CRP to predict 
in-hospital mortality among infectious disease patients 
[20–23].

Results
The eligible study population included patients admitted 
to the SGH and MSH. As shown in Fig. 1, we excluded 
eight patients because of missing clinical information 
including that of ECGs, admission notes, and labora-
tory examination results. The study involved 46,017 
patients, of which 1,548 and 639 patients had sepsis 
and septic shock, respectively. The DLM was devel-
oped using a development dataset of 73,727 ECGs from 
18,142 patients from the SGH. The internal validation of 
the DLM performance was conducted using 7,774 ECGs 
from 7,774 patients from the SGH. External validation 
of the DLM was conducted using 20,101 ECGs from 
20,101 MSH patients. The patients were divided into 
development, internal validation, and external validation 

groups. In patients with sepsis, the ECG had a rightward 
P-, R-, and T-wave axes, prolonged QTc, and tachycardia 
(Table 1).

During the internal and external validations, the AUC 
of the DLM for detecting sepsis, the primary outcome, 
using a 12-lead ECG was 0.901 (95% CI = 0.882–0.920) 
and 0.863 (95% CI = 0.846–0.879), respectively (Fig.  3 
and Table 2). The AUC of the DLM for detecting septic 
shock using 12-lead ECGs during internal and external 
validations was 0.906 (95% CI = 0.877–0.936) and 0.899 
(95% CI = 0.872–0.925), respectively. The AUC of the 
DLM for detecting sepsis using 6-lead and single-lead 
ECGs was 0.845–0.882, and the AUC of the DLM for 
detecting septic shock using 6-lead and single-lead ECGs 
was 0.881–0.906.

A sensitivity map showed that the QT interval and T 
wave were associated with sepsis, and the variable impor-
tance of deep learning confirmed that prolonged QTc 
was associated with sepsis (Fig. 4). The logistic regression 
and random forest had different variable importance and 
showed that prolonged QTc, T axis, and QRS duration 
were important variables (Table 3).

Subgroup analysis was conducted using ECGs from 
4,609 patients who were grouped into the validation 
dataset with infectious diseases. There were 256 in-hos-
pital mortality cases in the subgroup study population. 
The AUC of the DLM using 12-, 6-, and single-lead ECG, 
SOFA, qSOFA, NEWS, MEWS, lactate, WBC, and CRP 

Table 1 Baseline characteristics

SD standard deviation

Characteristics Non‑sepsis patients (n = 44,469) Sepsis patients (n = 1,548) p

Age, year, mean (SD) 58.01 (19.83) 61.83 (24.93)  < 0.001

Male, n (%) 20,836 (46.9) 810 (52.3)  < 0.001

Systolic blood pressure, mmHg, mean (SD) 121.61 (33.43) 101.05 (39.53)  < 0.001

Heart rate, bpm, mean (SD) 76.92 (17.63) 103.59 (23.65)  < 0.001

Respiratory rate, bpm, mean (SD) 18.79 (4.34) 26.29 (8.72)  < 0.001

Peripheral oxygen saturation, %, mean (SD) 97.18 (16.97) 92.81 (28.20)  < 0.001

Mental change, n (%) 288 (0.6) 753 (48.6)  < 0.001

C‑reactive protein, mg/dL, mean (SD) 13.30 (37.22) 49.80 (74.46)  < 0.001

Lactate, mmol/L, mean (SD) 1.87 (1.87) 4.64 (5.03)  < 0.001

White blood cell count, per µL, mean (SD) 8180 (4200) 13,090 (6190)  < 0.001

Total bilirubin, mg/dL, mean (SD) 0.72 (0.83) 1.39 (2.58)  < 0.001

Creatinine, mg/dL, mean (SD) 0.98 (0.97) 1.47 (1.53)  < 0.001

PR interval, ms, mean (SD) 169.07 (31.53) 161.47 (41.24)  < 0.001

QRS duration, ms, mean (SD) 96.59 (18.91) 96.96 (23.49) 0.461

QT interval, ms, mean (SD) 401.65 (47.90) 372.11 (63.62)  < 0.001

QTc, ms, mean (SD) 442.41 (37.66) 469.16 (43.79)  < 0.001

P‑wave axis, degree, mean (SD) 43.42 (30.85) 45.50 (38.72) 0.033

R‑wave axis, degree, mean (SD) 38.40 (46.36) 47.11 (61.76)  < 0.001

T‑wave axis, degree, mean (SD) 47.42 (53.10) 66.09 (81.47)  < 0.001
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for predicting in-hospital mortality was 0.817 (0.793–
0.840), 0.815 (0.794–0.836), 0.802 (0.780–0.825), 0.817 
(0.786–0.847), 0.797 (0.767–0.828), 0.808 (0.777–0.839), 
0.778 (0.747–0.808), 0.801 (0.758–0.844), 0.591 (0.552–
0.630), and 0.541 (0.499–0.583), respectively, which out-
performed other predictive models (Fig. 5 and Table 4).

As shown in Fig. 6, there was a significant difference in 
the prediction score of the DLM using ECG according to 
the presence of infection in the validation dataset (0.277 
vs. 0.574, p < 0.001). In patients with SARS-CoV-2, the 

same trend was observed in the prediction score of DLM 
using ECG before and after SARS-CoV-2 infection (0.260 
vs. 0.725, p = 0.018).

Discussion
We developed a DLM for screening sepsis and septic 
shock using 12-, 6-, and single-lead ECGs and demon-
strated reasonable accuracies for internal and external 
validations. We confirmed the performance of predicting 
in-hospital mortality in a subgroup analysis of patients 

Fig. 3 Performance of DLM for screening sepsis and septic shock using electrocardiography. AUC  area under the receiver operating characteristic 
curve; ECG electrocardiography; NPV negative predictive value; PPV positive predictive value; SEN sensitivity; SPE specificity
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Fig. 4 Sensitivity map of septic shock patients
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with infectious diseases. We also identified the ECG 
regions and features associated with sepsis. To the best 
of our knowledge, this study is the first to develop a DLM 
for sepsis screening using ECG.

Approximately 50% of sepsis patients have cardiac dys-
function, which is a well-known risk factor associated 
with a significantly increased mortality rate of 20–50% 
[24]. Sepsis develops into cardiac dysfunction by decreas-
ing the beta-adrenergic receptor components, which are 
mediated by inflammatory substances such as cytokines 
and nitric oxide [25]. Direct cardiomyocyte injury or 
death is caused by toxins and complications from sepsis. 
Cardiomyocyte apoptosis is the leading cause of cardiac 
dysfunction, followed by the downregulation of beta-
adrenoreceptors and impairment of myofibril function 
owing to the disruption of calcium liberation. Because 

Table 3 Variable importance for detecting sepsis

Rank Logistic regression 
(deviance 
difference)

Random forest 
(mean decrease 
Gini)

Deep learning 
(relative 
importance)

1 QTc (492) Heart rate (473.2) QTc (0.193)

2 Age (274) T‑wave axis (472.1) QT interval (0.168)

3 QRS duration (207) R‑wave axis (443.2) PR interval (0.121)

4 T‑wave axis (145 QTc (429.5) T‑wave axis (0.085)

5 QT interval (101) P‑wave axis (413.3) QRS duration (0.082)

6 Heart rate (63) Age (394.5) Age (0.079)

7 P‑wave axis (18) QRS duration (386.2) Heart rate (0.078)

8 R‑wave axis (11) QT interval (367.0) P‑wave axis (0.075)

9 PR interval (2) PR interval (363.0) R‑wave axis (0.063)

10 Sex (− 1) Sex (0.1) Sex (0.055)

Fig. 5 Performance of DLM for predicting in‑hospital mortality of patients with infectious disease. AUC  area under the receiver operating 
characteristic curve; ECG electrocardiography; MEWS Modified Early Warning Score; NEWS National Early Warning Score; NPV negative predictive 
value; PPV positive predictive value; SEN sensitivity; SOFA sequential organ failure assessment; SPE specificity
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sepsis affects cardiac function through direct or indirect 
pathophysiology, we hypothesized that an ECG contains 
information for sepsis detection. Previously, Rich et  al. 
showed that the QRS amplitude of sepsis was smaller 
than that of normal individuals [9]. However, conven-
tional statistical methods, such as logistic regression, 
cannot develop diagnostic criteria for using these sub-
tle changes and nonlinear correlations. ECG is affected 

by not only cardiac function but also other human fac-
tors. For example, a patient with fat and a larger body 
mass index has a lower ECG amplitude [26]. Madias et al. 
reported that the loss of QRS amplitude in the ECGs in 
patients with sepsis is not due to cardiac dysfunction 
but due to an extracardiac reason such as a reduction in 
the transfer impedance of the body volume conductor 
owing to water accumulation [27]. Recent studies have 

Table 4 Performance of DLM for predicting in‑hospital mortality of patients with infectious diseases

AUC  area under the receiver operating characteristic curve; ECG electrocardiography; MEWS Modified Early Warning Score; NEWS National Early Warning Score; NPV 
negative predictive value; PPV positive predictive value; SEN sensitivity; SOFA sequential organ failure assessment; SPE specificity

Predictive model AUC (95% CI) SEN (95% CI) SPE (95% CI) PPV (95% CI) NPV (95% CI)

DLM using 12‑lead ECG 0.817 (0.793–0.840) 0.785 (0.735–0.835) 0.710 (0.697–0.724) 0.137 (0.120–0.155) 0.983 (0.978–0.987)

DLM using 6‑lead ECG 0.815 (0.794–0.836) 0.844 (0.799–0.888) 0.682 (0.668–0.695) 0.135 (0.118–0.152) 0.987 (0.983–0.991)

DLM using 1‑lead ECG 0.802 (0.780–0.825) 0.945 (0.917–0.973) 0.524 (0.509–0.539) 0.105 (0.092–0.117) 0.994 (0.991–0.997)

SOFA score 0.817 (0.786–0.847) 0.734 (0.680–0.788) 0.785 (0.773–0.797) 0.167 (0.145–0.189) 0.980 (0.976–0.985)

Quick SOFA score 0.797 (0.767–0.828) 0.594 (0.534–0.654) 0.885 (0.875–0.894) 0.233 (0.200–0.265) 0.974 (0.969–0.979)

NEWS 0.808 (0.777–0.839) 0.738 (0.684–0.792) 0.771 (0.759–0.784) 0.160 (0.139–0.180) 0.980 (0.976–0.985)

MEWS 0.778 (0.747–0.808) 0.773 (0.722–0.825) 0.670 (0.656–0.684) 0.121 (0.105–0.137) 0.981 (0.976–0.985)

Lactate 0.801 (0.758–0.844) 0.646 (0.569–0.724) 0.854 (0.829–0.879) 0.466 (0.397–0.534) 0.925 (0.905–0.944)

WBC 0.591 (0.552–0.630) 0.504 (0.442–0.566) 0.679 (0.665–0.694) 0.086 (0.072–0.101) 0.958 (0.951–0.965)

C‑reactive protein 0.541 (0.499–0.583) 0.300 (0.242–0.359) 0.811 (0.799–0.823) 0.084 (0.065–0.103) 0.953 (0.946–0.960)

Fig. 6 Change of DLM’s prediction score according to infection. SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
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highlighted the possibility of using AI for interpreting an 
ECG. Using AI technologies based on a DLM, we could 
diagnose diseases that could not be diagnosed based on 
previous medical knowledge such as heart failure, valvu-
lar heart disease, pulmonary hypertension, anemia, and 
hyperkalemia [11–14, 28–30]. The most important aspect 
of deep learning is its ability to extract features and 
develop an algorithm using various types of data such as 
images, 2D data, and waveforms [15]. In this study, we 
developed a DLM for detecting sepsis and validated its 
performance based on external validation. DLM can also 
detect septic shock using a DLM prediction score. Previ-
ous studies have shown that inflammatory markers and 
infection are closely correlated with cardiac disease and 
ECG [31].

There has been enormous development in diverse 
wearable and lifestyle devices worldwide. There is already 
a base for remote diagnosis and treatment based on 
diverse biosensors and internet technologies. However, 
there are limitations in the biosignal interpretation by 
various wearable devices. ECG is an important biosignal 
for remote medical monitoring and treatment as it can 
be measured using diverse wearable devices and trans-
ferred to remote medical sites in real time. As a con-
ventional statistical limitation, an ECG is only used for 
the diagnosis of arrhythmia and myocardial infarction. 
Based on current studies, AI technologies have enabled 
the diagnosis and prediction of diverse diseases using 
ECG. In the ongoing SARS-CoV-2 pandemic, such tech-
nologies are important for screening infectious diseases, 
monitoring patient status, and capturing the deteriora-
tion of patients. In this study, we highlighted the possi-
bility of using DLMs for screening infectious diseases, 
including SARS-CoV-2, as shown in Fig.  6. The results 
were not definite evidence of SARS-CoV-2 screening via 
ECG. However, we wanted to demonstrate the possibil-
ity of developing deep learning for SARS-CoV-2 for other 
researchers. There is a need for studies on the use of AI 
for screening sepsis and septic shock. However, this study 
highlights the possibility of applying ECG to detect and 
monitor infectious patients. In this study, we confirmed 
that the performance was secured in six- and single-
lead ECGs. Because of this, we showed the possibility 
of applying the deep-learning model to various lifestyle 
ECG devices and patch devices.

This study had some limitations. First, we validated 
the DLM using retrospective data; however, it is neces-
sary to validate the DLM using prospective studies and 
real-time data. Studies related to the clinical significance 
of this new technology are required for its application in 
clinical practice. In our next study, we intend to verify 
the DLM performance and significance through a pro-
spective study on daily clinical practice. And we plan to 

conduct research on deep-learning models for predicting 
the development and resolution of sepsis using ECG. We 
plan to conduct a prospective study to validate the per-
formance of the deep-learning model as a screening and 
prognostic method. Second, this study was conducted 
in only two hospitals in Korea, and it would be helpful 
to validate the DLM in patients from other countries. 
Third, deep learning had a black box limitation owing to 
which we could not determine the exact decision-making 
process. Therefore, we could not confirm that our study 
findings represented correlation or causality. In our next 
study, we intend to develop a method for confirming the 
decision process and the causality of the deep-learn-
ing model. For the same reason, we could not know the 
exact features of the ECG that were used in deep learn-
ing. As technologies for explainable deep learning that 
could define the reason and feature are being developed, 
we can use this technology in our next study. Fourth, we 
conducted a retrospective study, and there could be con-
founders in this study. A prospective randomized con-
trolled study is needed to exclude hidden confounders 
and confirm the exact clinical implications of deep-learn-
ing models for sepsis.

Conclusion
The DLM demonstrated accurate performance in 
detecting sepsis and septic shock using ECG. The 
results of the present study indicate that the application 
of AI technologies based on a DLM to an ECG could 
predict the development of sepsis in patients and ena-
ble the screening of diverse infectious diseases.
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